首页 > 玄幻魔法 > 数学心 > 第三百三十二章 拉马努金连分数机

第三百三十二章 拉马努金连分数机(1/2)

目录
好书推荐: 深渊游戏之超人领主 明日方舟里的咸鱼六星 末世降临:无限升级避难所 零默的失忆人生 唯一练气士 汉道天下 权御群雄 从宝可梦开始的海贼王冒险 风云假城主开局 仙府长生

细数人类史上最伟大的那些思想,斯里尼瓦瑟·拉马努金(srinivasaramanujan)绝对能算得上是其中一个。很多人或许从《知无涯者》这部传记电影中获悉了他短暂而传奇的一生。

1887年,拉马努金出生在一个距离马德拉斯(现在的金奈)约400公里的小村庄里,很早的时候,他就对数学产生了浓厚的兴趣。他不喜欢大多数数学家所喜欢的那种形式证明,出身贫寒而靠着自学成才的他总能提出打破传统的数学思想。

1914年,在剑桥大学数学家哈代(g.dy)的邀请之下,拉马努金于启航前往英国,开始了数学史上最迷人的一段合作,两个惺惺相惜的伟大头脑衍生出了一系列数论领域的重要成果。拉马努金提出过许多猜想,其中很多都被证实是正确的。除了那些实实在在的数学定理之外,他的思想也给许多后世的科学家带去了启示。

泰勒公式:

在拉马努金提出的定理中,经常涉及到连分数的概念,它会将一个数表示成为无限的嵌套分数和。以色列理工学院的数学家galraayoni和他的同事受到拉马努金的启发,利用这种思路发明了一种新颖、系统的方法,并将它取名为拉马努金机。这是一种计算机程序,它可以利用算法推导出基本常数的新的数学公式,并揭示其基本结构。

与物理和所有其他科学中的测量不同,数学常数可以用一个恰当的公式计算到任意精度(即小数点后任意位),从而提供的是一个绝对的基本真理。从这个意义上说,数学常数包含的是无限数量的数据(例如无理数中的无限数列序列)。e和π就是两个几乎无处不在的基本数学常数,从抽象的数学到几何物理,从生物到化学,到处都有他们的身影。

本章未完,点击下一页继续阅读。

目录
新书推荐: 亡灵魔法少女和她的小骷髏主人 公子请施针 蒸汽领主:从殖民地开始崛起 炼狱王座 领主:从抽卡开始 我的专业修仙辅助器 拳压民国武林:开局觉醒烛龙之瞳 灰鼠先生的链金日志 当咸鱼怎么了,我有分身带飞 无限宗门升级系统
返回顶部